N-type Cu_{0.008}Bi₂Te_{2.7-x}Se_{0.3} 열전 합금에서 Te 공공 형성에 의한 열전 성능 연구

AEML 홍석원 (신소재), 이민형(신소재), 안지우(신소재), 한유진(신소재), 전지훈(화공) 지도교수: 김상일

Advanced Energy Materials Lab.

에너지 나노소재 연구실

electrical conductivity σ [S/cm] Seebeck coefficient, S [$\mu V/K$] Thermal Conductivity [$W/m \cdot K$] Absolute Temperature, T [K]

 $zT = \frac{\sigma S^2}{\kappa} T$

 $P.F. = \sigma S^2$

Power Factor, P. F. $[mW/mK^2]$

Fig. 5. X-ray diffraction patterns of (a) $Cu_{0.008}Bi_2Te_{2.7-x}Se_{0.3}$ and (b) Calculated lattice parameters a and c of the $Cu_{0.008}Bi_2Te_{2.7-x}Se_{0.3}$ with x=0, 0.005, 0.01 and 0.02.

Fig. 6. (a) The measured electrical conductivity σ , (b) Seebeck coefficient S and (c) power factor σ S² of the samples as a function of temperature for the Cu_{0.008}Bi₂Te_{2.7-x}Se_{0.3} with x=0, 0.005, 0.01, 0.02.

(d) (e) Estimated carrier concentrations and mobilities from the Hall measurement. (f) Pisalenko plot.

Fig. 7. (a) The electron (n_e) and hole (n_h) concentration, (b) weighted mobility(U) of CB and VB and (c) weighted mobility ratio (A=U_{CB}/U_{VB}) calculated from SPB at 300K.

Table 1. Band parameters obtained using the two-band model

	Cu	$I_{0.008}Bi_2Te_{2.7-x}Se_{0.3}$			
Band parameters		x=0	x=0.005	x=0.01	x=0.02
Conduction band (CB)	$\operatorname{CB} E_{\operatorname{def}}(\operatorname{eV})$	18.4	18.0	17.7	17.5
	CB m^* (in m_0)	1.06	1.07	1.08	1.09
	$U_{\rm CB}~({\rm cm}^2/{\rm Vs})$	291	299	306	313
	Electron conc. $n_{\rm e} (10^{19} {\rm cm}^{-3})$	2.98	3.28	3.24	4.01
Valence band (VB)	$\operatorname{VB} E_{\operatorname{def}}(\operatorname{eV})$	29.5	29.0	29.1	27.1
	VB m^* (in m_0)	1	1	1	1
	$U_{\rm VB}~({\rm cm}^2/{\rm Vs})$	119	124	123	142
	Hole conc. $n_{\rm h} (10^{16} {\rm cm}^{-3})$	4.74	4.25	4.41	3.30
A (U _{CB} /U _{VB})		2.44	2.42	2.50	2.21

Table 1. Band parameters obtained using the two-band model.

 $E_{def} =$ deformation potential

 m^* = density-of-states effective mass (m₀ = electron mass)

 μ_0 = nondegenerate mobility

U = weighted mobility

A = weighted mobility ratio

Fig. 8. (a) The total thermal conductivity κ_{tot} , (b) the electronic thermal conductivity κ_{elec} , (c) the bipolar thermal conductivity κ_{bp} , and (d) the lattice thermal conductivity κ_{latt} of the $Cu_{0.008}Bi_2Te_{2.7-x}Se_{0.3}$ with x=0, 0.005, 0.01 and 0.02.

Fig. 5. (a) Temperature dependence of the dimensionless figure of merit zT (b) zT520K, $zT_{average}$ and zT_{max} of the $Cu_{0.008}Bi_2Te_{2.7-x}Se_{0.3}$ with x=0, 0.005, 0.01 and 0.02.

Thank You