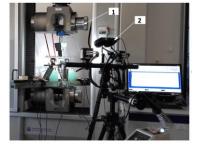
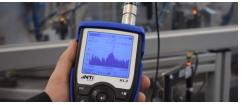
포터블 진동 분석 시스템 개발

2020학년도 X-TWICE 성과공유한마당

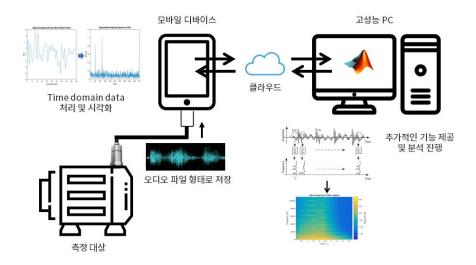
팀명: 진라면


이성재1), 안재영2), 유태영2), 유지환2), 김태현3), 이수일3), 김일광4)

- 1) 연구팀장, 서울시립대학교 기계정보공학과 대학원
- 2) 팀원, 서울시립대학교 기계정보공학과
- 3) 지도교수, 서울시립대학교 기계정보공학과
- 4) 산업체 멘토, APS 홀딩스


연구 배경

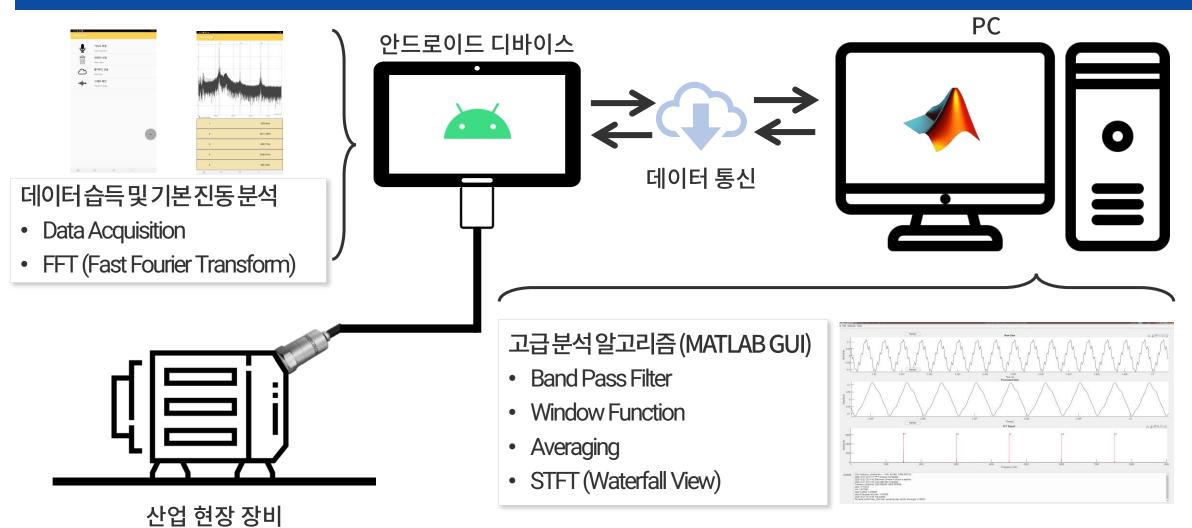
연구의 필요성 및 목적



"고가의 장비, 복잡한 시스템으로 구성된 기존 진동 분석 시스템 보완"

- 아날로그 측정 장비로 얻은 신호를 ADC 를 통해 디지털로 변환
- 시스템 구성이 복잡함
- 운용하는 데 전문 지식 필요

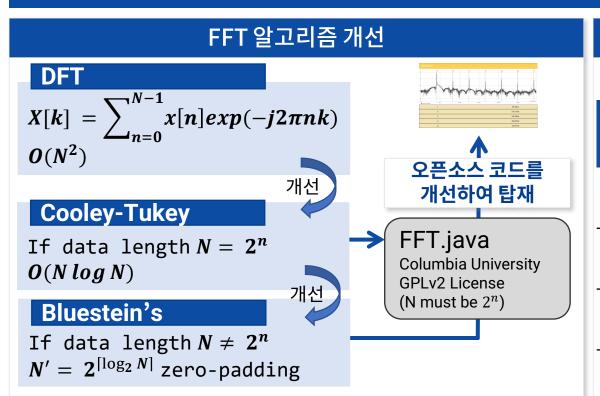
안드로이드 어플리케이션 기반 분석 시스템


- 안드로이드 디바이스로 즉각적 데이터 취득
- 클라우드를 이용한 안드로이드-PC 간 데이터 통신
- 쉽게 사용할 수 있는 편리한 인터페이스

안드로이드 어플리케이션 기반 진동분석 시스템 구현

서울시립대학교

전체 시스템 구조



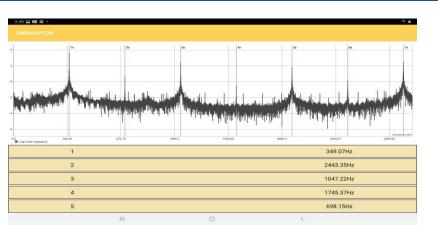
안드로이드 어플리케이션 기반 진동분석 시스템 구현

FFT 알고리즘 구현

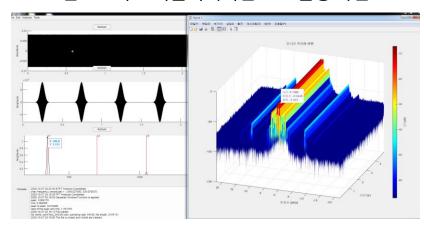
- Cooley-Tukey 알고리즘 은 데이터 사이즈 $N=2^n$ 일 경우에만 작동
- $N' = 2^{\lceil \log_2 N \rceil}$ 까지 확장하여 0을 대입하여도 FFT 결과값은 같음 \rightarrow zero-padding 프로세스를 추가
- 이론적으로 같으나 결과값이 이산데이터로 나타나므로 Built-in 코드 와의 대조를 통한 실효성 검증 필요

소스코드 검증

FFT결과값	1502	2Hz	450	7Hz	751	2Hz	1052	20Hz
비교	Freq.	Mag.	Freq.	Mag.	Freq.	Mag.	Freq.	Mag.
MATLAB Built-in	1502.2	6306	4507.4	514.7	7512.4	308	10516	692
Zero- Padding	1502.5	7059	4507.2	472.5	7512.1	408.8	10516	876.4
상대오차 (%)	0.020	11.268	0.004	8.549	0.004	28.125	0.000	23.514


- Frequency 결과값에는 큰 차이가 없음
- lacksquare 주파수 해상도 Δf 에 따라서 Magnitude는 달라질 수 있음

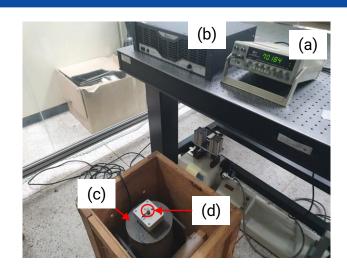
안드로이드 어플리케이션 기반 진동분석 시스템 구현



주요 기능 명세

주요 기능	제작 안드로이드 어플리케이션	MATLAB GUI 어플리케이션
Monitoring	 Frequency-domain 데이터 모니터링 Log scale 보기 제공 Octave 주파수 보기 제공 	 시간 데이터, 주파수 데이터 동시에 확인 Window, Filter 등을 적용한 시간 데이터 확인 Linear Scale, Log Scale 보기 제공 Octave 주파수 보기 제공
Browsing	• Zoom in/out	Zoom in/out이미지로 저장출력
Window	• Blackman Window 적용	• Blackman, Hanning, Hamming, Flattop, Gaussian 지원
부가 기능	_	Band Pass FilterAveragingSTFT (Waterfall View)

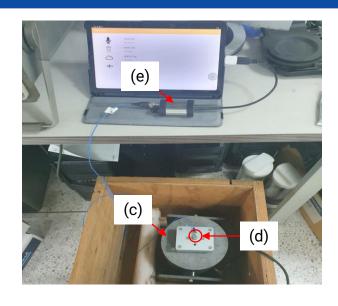
안드로이드 어플리케이션 FFT 실행 화면


MATLAB GUI 어플리케이션 STFT 실행 화면

검증 실험

실험 구성

실험 장비 구성


- (a) 함수 발생기 (EZ Digital fg 7002c)
- (b) 신호 증폭기 (MB Dynamics sl500)
- (c) 가진기 (MB Dynamics modal 50)
- (d) 가속도계 (PCB Piezotronics 352C33)
- (e) ADC (PCB Piezotronics 485B39)

실험 1: 아날로그 가속도계 이용 진동 분석

- 아날로그 가속도계 (d)를 이용해 측정
- 모니터링 주파수 그래프에 Marker 기능으로peak 주파수 확인

실험 2: 안드로이드 어플리케이션 이용 진동 분석

- 기존 아날로그 가속도계 (d)에 ADC (e)를 연결하여 안드로이드 디바이스와 연결
- 5초간 데이터 취득 후 어플리케이션의 배열 플로팅 기능으로 그래프 및 peak 주파수 확인

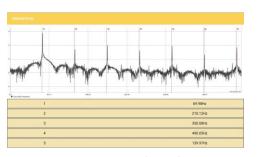
검증 실험

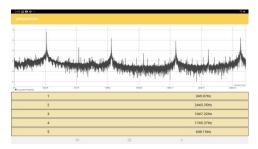
실험 결과

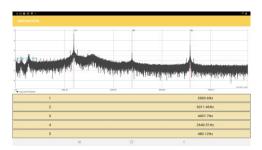
데이터 속성	Data 1	Data 2	Data 3
주파수	70.0 Hz	349.0 Hz	2003.4 Hz
파형	Sine	Triangle	Square

Analog	Data 1	Data 2	Data 3
1 st peak	70	352	2016
2 nd peak	210	2448	10048
3 rd peak	350	1048	6016
Арр	Data 1	Data 2	Data 3
App 1st peak	Data 1 69.98	Data 2 349.07	Data 3 2003.6
1 st peak	69.98	349.07	2003.6

• Data3의 일부분을 제외하면 주파수 값이 유사한 양상을 보임 → 어플리케이션에서는 최대 8000Hz까지 확인 가능하므로 해 당대역 내의 peak값을 검출하는 것이 원인

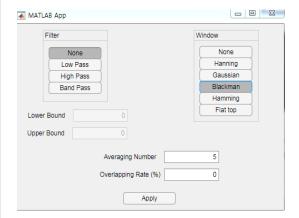

Data 1 on HP-35670a

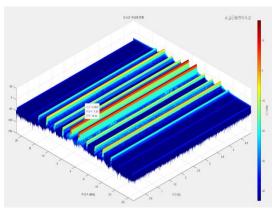

Data 2 on HP-35670a


Data 3 on HP-35670a

Data 1 on Android App

Data 2 on Android App


Data 3 on Android App


검증 실험

후속 분석, 실제 적용

MATLAB GUI 어플리케이션

Averaging

- 제작 안드로이드 어플리케이션으로 취득한 데이터를 PC로 전송 받음
- 평균횟수지정 및 각데이터 섹션별 overlap 비율을 조정해 보다더 세밀하게 평탄화작업 가능

STFT

- 구간별 주파수 데이터를 시간에 따라 나열
- 한지점을 클릭해 시간대, 주파수, magnitude 값을 확인할 수 있음
- 주파수가 시간에 따라 변하는 상황에 활용하기 용이함

실제 적용 사례

Digital Accelerometer

• Digiducer사 333D01 모델 (USB)

Application Case

 안드로이드 휴대폰으로 데이터 취득 후 현장에서 노트북으로 후속분석 수행

효과 및 활용방안

■ 결론

- 디지털 시스템으로 아날로그 장비 수준의 주파수 데이터 모니터링 가능
- USB 사양의 가속도계를 현장에서 활용하여 간편하게 데이터 취득 용이
- 안드로이드 디바이스를 이용해 간단한 모바일 진동 측정 시스템 구축
- 활용 방안
 - 기존 진동 모니터링 장비를 개인 휴대전화 및 태블릿을 이용해 부분적으로 대체
 → 산업현장 적용 유리
 - 클라우드 플랫폼 활용 모바일 디바이스-PC 간 데이터 공유로 활용성 증대
- 후속 발전 과제
 - 안드로이드 어플리케이션의 실시간 진동 모니터링 기능 개발
 - 응용사례에 따라 맞춤형 앱 구성 가능

감사합니다