

유로 형상 및 가스켓에 따른 고분자 전해질 연료전지 금속분리판의 변형 해석

우주최강 팀 Team 'The strongest in the universe'

UOS Energy Laboratory

Contents

1. Introduction

2. Flow Path Analysis

3. Gasket Analysis

- 1) Material
- 2) Internal Pressure

4. Conclusions

5. Plans

Introduction

Introduction

• Problem of Metal Bipolar Plate

Referece : wikitree

Buckling Phenomenon of Stack

- ⇒ Single Cell (50mm×50mm)
- (1) Gasket (0.6mm)
- (2) GDL (0.29mm)
- (3) End-Plate (1mm)
- (4) Bipolar Plate
- ⇒ Case Study
- (1) Shape of Flow path
- (2) Material of Gasket
- (3) Width of Gasket

Flow Path Analysis

Dimensions

(1)	Height (h) :	0.31	[mm]
(2)	Width (W, W _s) :	1	[mm]
(3)	Thickness (t) :	0.1	[mm]
(4)	Draft Angle (α) :	10 ~ 30	[°]
(5)	Fillet Radius (R)	1.5~2	[mm]

⇒ 15 Cases

α [°] R [mm]	10	15	20	25	30
0.150	Case 1	Case 2	Case 3	Case 4	Case 5
0.175	Case 6	Case 7	Case 8	Case 9	Case 10
0.200	Case 11	Case 12	Case 13	Case 14	Case 15

Energy Laboratory, University of Seoul

Material Properties of Components

Component	B.P.	Gasket	GDL
material	SS430	EPDM Rubber	Carbon Paper
Density (kg · m ⁻³)	7700	1430	7850
Young's modulus E (MPa)	195000	6.0	225000
Poisson's ratio v	0.275	0.49	0.3

Conditions

- (1) All bonded conditions
- (2) 10MPa Pressure to Endplate
- (3) Same contact surfaces on all cases
- (4) Use EPDM Rubber Sheet

Flow Path Analysis

Results

Fig. 1 Deformation of Bipolar plate (a) Top view, (b) Side view

 \Rightarrow Shape of the deformation is sinking shape

 \Rightarrow Based on the deformation in the Z-direction of the face with reference to the Global coordinate system

Fig. 2 Deformation of Bipolar plate on reference face

 \Rightarrow R, $\alpha \propto$ Deformation of Flow path

Flow Path Analysis

Results

Fig. 3 Case study results for average deformation of Bipolar plate

Fig. 4 Von-Mises stress of Bipolar plate

⇒ As the draft angle and fillet radius increase, the average deformation increases.

⇒ The least deformation occurs when the fillet radius and draft angle are minimized.

⇒ The gap between maximum and minimum deformation is about 0.0003mm (50% \uparrow)

 \Rightarrow As the draft angle and fillet radius increase, the stress is concentrated in a specific region.

 \Rightarrow As a result, the flow path collapses due to the deformation of the region

Energy Laboratory, University of Seoul

Geometry

 \Rightarrow The model of Bipolar plate is R – 0.15mm, α – 10°

⇒ Properties of Gasket

Component	Gasket		
Material	Silicone adhesive	EPDM Rubber	
$Density \\ (kg \cdot m^{-3})$	1050	1430	
Young's modulus E (MPa)	0.9	6.0	
Poisson's ratio v	0.49	0.49	

⇒ Gasket Width : 5mm

Conditions

- (1) All bonded conditions
- (2) 10MPa Pressure to Endplate
- (3) Same contact surfaces on all cases

Results

Fig. 5 Pressure at the contact surface of the gasket and BP

Energy Laboratory, University of Seoul

5

10

Average

Max

 \Rightarrow According to the preceded research, pressure applied to the contact surface must be more than 1.9MPa to prevent the leakage of hydrogen and oxygen compressed into 0.3MPa

 \Rightarrow The average pressure applied to the EPDM rubber sheet is 4.4MPa and silicone adhesive is 1.1MPa

Fig. 6 Pressure at the contact surface of the gasket and BP

Results

Fig. 7 Deformation of flow path

Fig. 8 Deformation of flow path

⇒ The average deformation of bipolar plate is similar for both gaskets

 \Rightarrow In the case of silicone adhesive, stability is low due to the maximum deformation at the edges

Results

Fig. 9 Deformation of the rubber sheet gasket according to the width

 \Rightarrow Analyze by changing the width of the rubber sheet (the thickness is fixed)

⇒ Considering the average and maximum deformation of the flow path, if a 3mm rubber sheet is used, performance similar to a 5mm silicone adhesive can be achieved

 \Rightarrow By reducing the width of the gasket, the active area can be increased.

Geometry

 \Rightarrow The model of Bipolar plate is $R - 0.15mm, \alpha - 10^{\circ}$

 \Rightarrow The width of the gasket is 2 to 5 mm, total 7cases.

 \Rightarrow The position of the gasket was centered.

 \Rightarrow The structure to prevent the gasket from coming off was not applied

 \Rightarrow FPDM rubber sheet is used

Conditions

- (1) Frictional conditions : Bipolar plate - Gasket, Endplate – Gasket (Coefficient of friction: 0.64)
- (2) 10MPa pressure to Endplate
- (3) 0.3MPa internal pressure to Gasket
- Same contact surfaces on all cases (4)

Results

Results

Fig. 10 Sliding distance and Deformation of flow path

Fig. 11 Sliding distance and deformation of flow path

⇒ The smaller the gasket width, the larger the sliding distance

 \Rightarrow The larger the sliding distance, the larger the deformation of the flow path

 \Rightarrow By sliding, the deformation of edge increases

Geometry

Results

Fig. 12 Deformation of single cell

Fig. 13 Maximum deformation of the flow path according to the structure that prevents the gasket from separating.

⇒ Deformation of the flow path is reduced by applying a structure that prevents the gasket from separating.

⇒ At this time, the difference in deformation was not large, less than about 0.2%. The width of the gasket has a greater influence on the flow path deformation.

 \Rightarrow For weight reduction, volume reduction, and stability, PEFC uses metal separators.

⇒ Since the metal separator is thin, there is a problem of deformation when the pressure exceeds a certain level.

 \Rightarrow As the fillet radius and drafts angle increase, the area where stress is concentrated occurs, so when the design variable is decreased, deformation is decreased.

⇒ The pressure applied to the contact surface of the EPDM rubber sheet is 4.4MPa and the pressure on the silicone adhesive is 1.1MPa, so the rubber sheet is more appropriate in same thickness and width.

⇒ At the same thickness, 3mm EPDM rubber sheet and 5mm silicone adhesive have similar performance in terms of flow path deformation.

 \Rightarrow Considering the compressed hydrogen and oxygen inside, the width of the gasket affects the deformation of the flow path and the sliding distance.

 \Rightarrow The width of the gasket has a greater influence on the deformation than the sliding of the gasket.

Plans

⇒ Experimental verification of analysis results

This research was supported by X-mind Corps program of National Research Foundation of Korea(NRF) funded by the Ministry of Science, ICT (NRF-2017H1D8A1030582)

Thank you