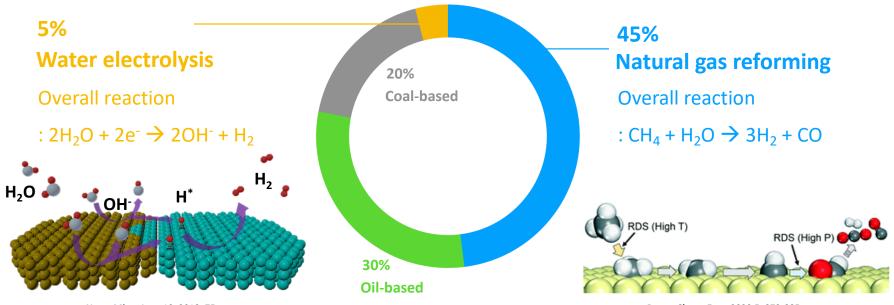
X-TWICE 최종 발표 자료

전기화학적 수소 생성 반응에 효율적인 촉매 설계 (Designing Efficient Catalyst for Electrochemical Hydrogen Evolution Reaction)

Yoo group

팀장:이수형

팀원 : 이성우, 최민지


지도교수 : 유종석

Background

Global hydrogen gas production

Nano-Micro Lett. 10, 2018, 75

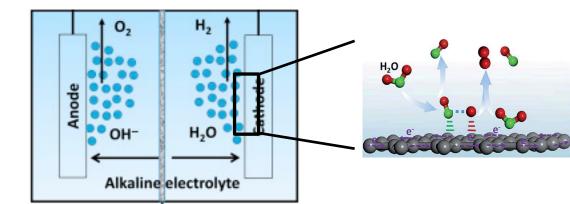
React. Chem. Eng., 2020,5, 873-885

Advantage

Yoo group

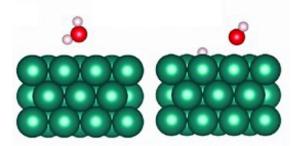
putational Catalysis & Materials Design Lab

- Electricity supply by renewable energy
- No pollutant emission
- Plug-and-play mechanism


Disadvantage

- Fossil fuel dependence
- Greenhouse gases emission(CO, CO₂, etc.)
- Storage and delivery problem

Problem & Previous study


• Hydrogen evolution reaction (HER) mechanism in alkaline medium

Volmer step	$H_2O + e^- \rightarrow H^* + OH^-$
Heyrovsky step	$H_2O + H^* + e^- \rightarrow H_2 + OH^-$
Total reaction	$2H_2O + 2e^- \rightarrow H_2 + 2OH^-$

Rate determining step (RDS)

Volmer step $H_2O + e^- \rightarrow H^* + OH^-$

H₂O dissociation step Need high-activity Pt-group metal

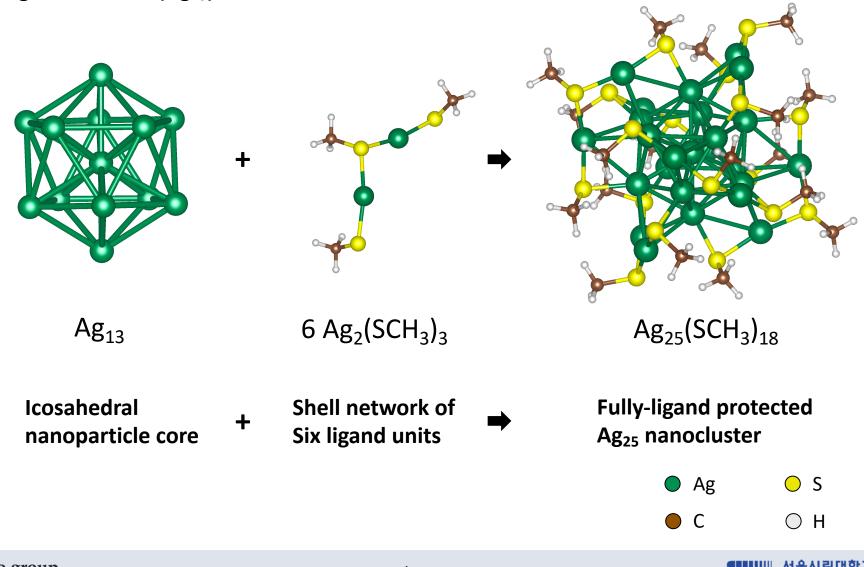
Yoo group

Computational Catalysis & Materials Design Lab

Rare-earth material Scarce, high-price

Research summary

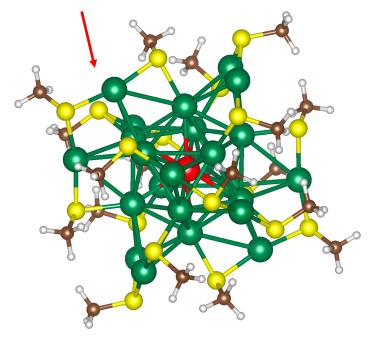
oo group


oputational Catalysis & Materials Design Lab

서울시립대학교 UNIVERSITY OF SEQUE

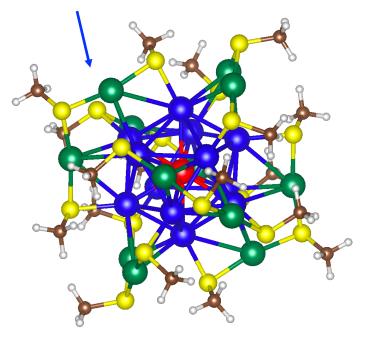
Methods

• Ag nanocluster (Ag₂₅)


UNIVERSITY OF SECUL

Methods

Yoo group

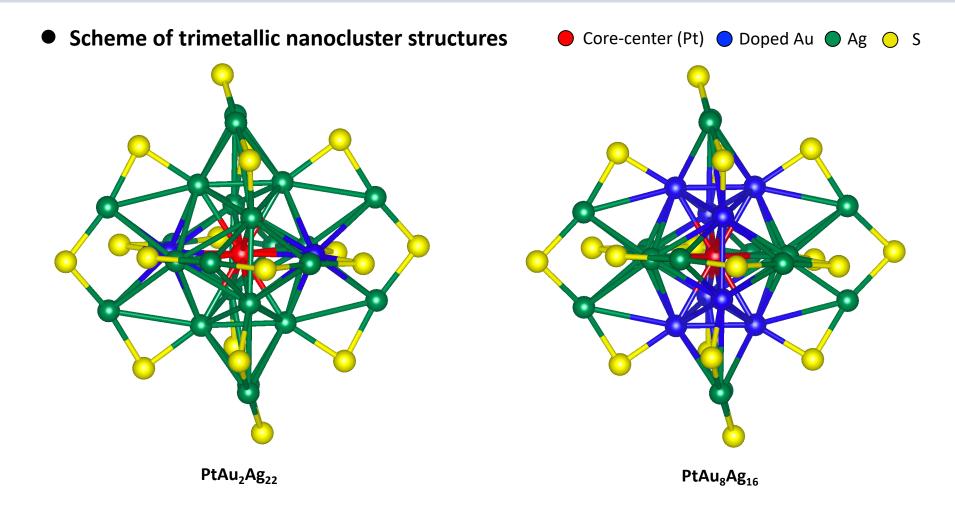

utational Catalysis & Materials Design Lab

- Bimetallic Ag nanocluster (MAg₂₄)
- Pt, Pd, Au doping into core-center site

Trimetallic Ag nanocluster (PtAu_xAg_{24-x})

Au partial doping into core-surface sites

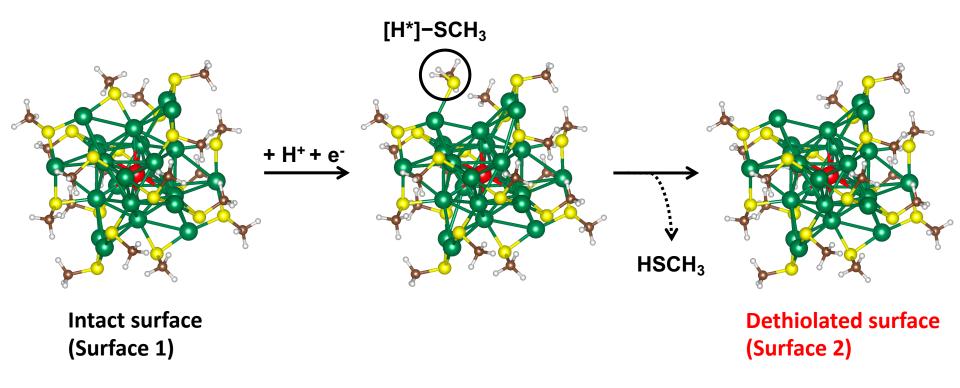
🛑 Core-center (M) 🛛 🔵 Ag \ominus S 🛑 C 🔾 H 🛑 Core-center (Pt) 🔵 Core-surface 🔵 Staple Ag


- **Core-center** atom can be replaced with other atoms (Au, Pd, and Pt).
- Au atoms are partially substituted (x=2 or 8) into the core-surface sites on PtAg₂₄.

Methods

Yoo group

Computational Catalysis & Materials Design Lab



Most stable Au doping sites among core-surface atoms were determined by calculations.
(-CH₃ were omitted for a clarity.)

Ligand removal

• Scheme mechanism for ligand removal

- Under the reducing condition, the thiolate ligands can be removed.
- Thiolate ligand removed site can be served as a new active site.

Ligand removal

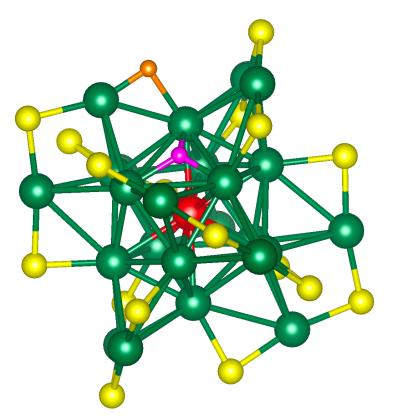
oo group

tional Catalysis & Materials Design Lab

- Pre-electrolysis condition (Exp.)
 - Alkaline condition (pH = 14) : 0.6 V vs. RHE (-1.4 V vs. NHE)
- Calculated potentials for 1-ligand removal

Surface	U (V vs. CHE)	Surface	U (V vs. CHE)
Ag ₂₅	-0.33	PtAu ₂ Ag ₂₂	-0.62
AuAg ₂₄	-0.35	PtAu ₈ Ag ₁₆	-0.65
PdAg ₂₄	-0.48	Au ₂₅	-0.81
PtAg ₂₄	-0.40	PtAu ₂₄	-0.92

- For all surfaces, a thiolate ligand can be removed at the experiment.
- We designed 1 ligand removed surface for a simplicity.



Active sites

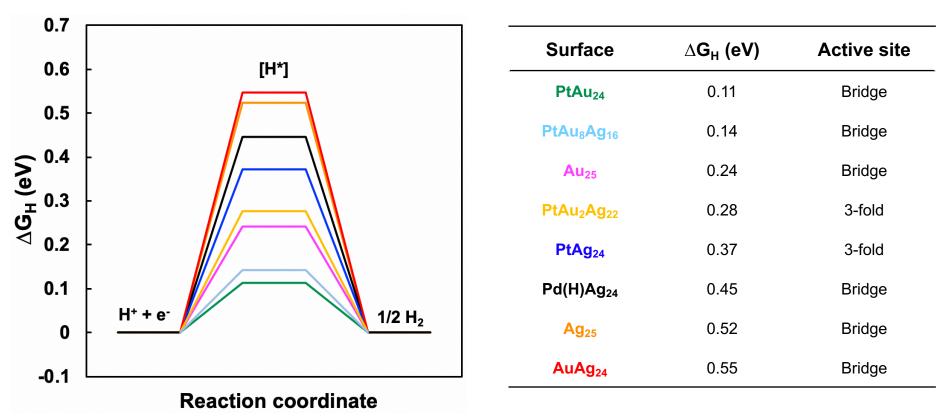
oo group

ional Catalysis & Materials Design Lab

• Active sites on dethiolated surfaces

Color code	orange	magenta
Active site name	Bridge	3-fold

- When a ligand is removed, a new active site (bridge) is exposed.
- 3-fold site usually serves as active site on intact surface, while bridge site can be more active on dethiolated surface.



HER activity of nanoclusters

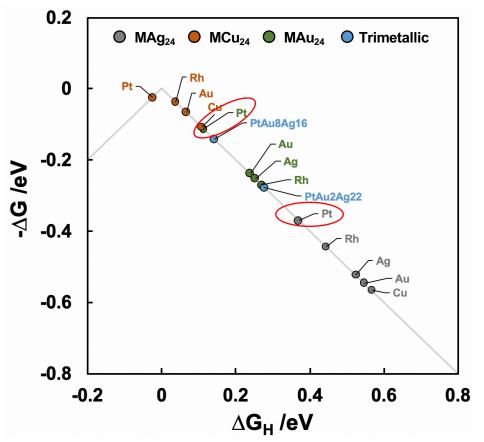
Yoo group

itional Catalysis & Materials Design Lab

• Hydrogen adsorption free energy diagram and active sites

 $PtAu_{24} \sim PtAu_{8}Ag_{16} > PtAu_{2}Ag_{22} > PtAg_{24} > Pd(H)Ag_{24} > AuAg_{24} \sim Ag_{25}$

• Calculated ΔG_{H} values show that has $PtAu_{8}Ag_{16}$ as high HER activity as $PtAu_{24}$.



Volcano plot of HER

Yoo group

ational Catalysis & Materials Design Lab

• Volcano plot of HER on nanoclusters (1-ligand dethiolated surfaces)

- As Au atoms are added into $PtAg_{24}$, ΔG_H moves toward top of volcano which means the optimum value. (ΔG_H =0)
- Like pure TM catalysts, shell alloying can be a strategy for controlling catalytic activity.

Conclusions

• HER activity improves on **PtAg₂₄** compared to **Ag₂₅**, but it has still much lower activity

than PtAu₂₄.

HER activity of PtAu₈Ag₁₆ is as high as that of PtAu₂₄ even though it contains only a

certain amount of Au atoms.

• Alloying, an important strategy for controlling catalytic activity in TM catalysts, can also

be applied to nanoclusters.

• Using the volcano plot, we can design new shell alloying nanocluster catalysts in the

future works.

X-TWICE 최종 발표 자료

전기화학적 수소 생성 반응에 효율적인 촉매 설계 (Designing Efficient Catalyst for Electrochemical Hydrogen Evolution Reaction)

Yoo group

팀장:이수형

팀원 : 이성우, 최민지

지도교수 : 유종석

